Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria.

Identifieur interne : 001C76 ( Main/Exploration ); précédent : 001C75; suivant : 001C77

Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria.

Auteurs : Sebastian Dintner [Allemagne] ; Anna Staron ; Evi Berchtold ; Tobias Petri ; Thorsten Mascher ; Susanne Gebhard

Source :

RBID : pubmed:21665979

Descripteurs français

English descriptors

Abstract

In Firmicutes bacteria, ATP-binding cassette (ABC) transporters have been recognized as important resistance determinants against antimicrobial peptides. Together with neighboring two-component systems (TCSs), which regulate their expression, they form specific detoxification modules. Both the transport permease and sensor kinase components show unusual domain architecture: the permeases contain a large extracellular domain, while the sensor kinases lack an obvious input domain. One of the best-characterized examples is the bacitracin resistance module BceRS-BceAB of Bacillus subtilis. Strikingly, in this system, the ABC transporter and TCS have an absolute mutual requirement for each other in both sensing of and resistance to bacitracin, suggesting a novel mode of signal transduction in which the transporter constitutes the actual sensor. We identified over 250 such BceAB-like ABC transporters in the current databases. They occurred almost exclusively in Firmicutes bacteria, and 80% of the transporters were associated with a BceRS-like TCS. Phylogenetic analyses of the permease and sensor kinase components revealed a tight evolutionary correlation. Our findings suggest a direct regulatory interaction between the ABC transporters and TCSs, mediating communication between both components. Based on their observed coclustering and conservation of response regulator binding sites, we could identify putative corresponding two-component systems for transporters lacking a regulatory system in their immediate neighborhood. Taken together, our results show that these types of ABC transporters and TCSs have coevolved to form self-sufficient detoxification modules against antimicrobial peptides, widely distributed among Firmicutes bacteria.

DOI: 10.1128/JB.05175-11
PubMed: 21665979
PubMed Central: PMC3147537


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria.</title>
<author>
<name sortKey="Dintner, Sebastian" sort="Dintner, Sebastian" uniqKey="Dintner S" first="Sebastian" last="Dintner">Sebastian Dintner</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried</wicri:regionArea>
<wicri:noRegion>Planegg-Martinsried</wicri:noRegion>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Staron, Anna" sort="Staron, Anna" uniqKey="Staron A" first="Anna" last="Staron">Anna Staron</name>
</author>
<author>
<name sortKey="Berchtold, Evi" sort="Berchtold, Evi" uniqKey="Berchtold E" first="Evi" last="Berchtold">Evi Berchtold</name>
</author>
<author>
<name sortKey="Petri, Tobias" sort="Petri, Tobias" uniqKey="Petri T" first="Tobias" last="Petri">Tobias Petri</name>
</author>
<author>
<name sortKey="Mascher, Thorsten" sort="Mascher, Thorsten" uniqKey="Mascher T" first="Thorsten" last="Mascher">Thorsten Mascher</name>
</author>
<author>
<name sortKey="Gebhard, Susanne" sort="Gebhard, Susanne" uniqKey="Gebhard S" first="Susanne" last="Gebhard">Susanne Gebhard</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21665979</idno>
<idno type="pmid">21665979</idno>
<idno type="doi">10.1128/JB.05175-11</idno>
<idno type="pmc">PMC3147537</idno>
<idno type="wicri:Area/Main/Corpus">001B92</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B92</idno>
<idno type="wicri:Area/Main/Curation">001B92</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B92</idno>
<idno type="wicri:Area/Main/Exploration">001B92</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria.</title>
<author>
<name sortKey="Dintner, Sebastian" sort="Dintner, Sebastian" uniqKey="Dintner S" first="Sebastian" last="Dintner">Sebastian Dintner</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried</wicri:regionArea>
<wicri:noRegion>Planegg-Martinsried</wicri:noRegion>
<orgName type="university">Université Louis-et-Maximilien de Munich</orgName>
<placeName>
<settlement type="city">Munich</settlement>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Staron, Anna" sort="Staron, Anna" uniqKey="Staron A" first="Anna" last="Staron">Anna Staron</name>
</author>
<author>
<name sortKey="Berchtold, Evi" sort="Berchtold, Evi" uniqKey="Berchtold E" first="Evi" last="Berchtold">Evi Berchtold</name>
</author>
<author>
<name sortKey="Petri, Tobias" sort="Petri, Tobias" uniqKey="Petri T" first="Tobias" last="Petri">Tobias Petri</name>
</author>
<author>
<name sortKey="Mascher, Thorsten" sort="Mascher, Thorsten" uniqKey="Mascher T" first="Thorsten" last="Mascher">Thorsten Mascher</name>
</author>
<author>
<name sortKey="Gebhard, Susanne" sort="Gebhard, Susanne" uniqKey="Gebhard S" first="Susanne" last="Gebhard">Susanne Gebhard</name>
</author>
</analytic>
<series>
<title level="j">Journal of bacteriology</title>
<idno type="eISSN">1098-5530</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ATP-Binding Cassette Transporters (genetics)</term>
<term>ATP-Binding Cassette Transporters (metabolism)</term>
<term>Anti-Bacterial Agents (pharmacology)</term>
<term>Bacillus subtilis (drug effects)</term>
<term>Bacillus subtilis (genetics)</term>
<term>Bacillus subtilis (metabolism)</term>
<term>Bacteria (classification)</term>
<term>Bacteria (drug effects)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (metabolism)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Drug Resistance, Bacterial (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Peptides (pharmacology)</term>
<term>Phylogeny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antibactériens (pharmacologie)</term>
<term>Bacillus subtilis (effets des médicaments et des substances chimiques)</term>
<term>Bacillus subtilis (génétique)</term>
<term>Bacillus subtilis (métabolisme)</term>
<term>Bactéries (classification)</term>
<term>Bactéries (effets des médicaments et des substances chimiques)</term>
<term>Bactéries (génétique)</term>
<term>Bactéries (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Peptides (pharmacologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Résistance bactérienne aux médicaments (MeSH)</term>
<term>Transporteurs ABC (génétique)</term>
<term>Transporteurs ABC (métabolisme)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>ATP-Binding Cassette Transporters</term>
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>ATP-Binding Cassette Transporters</term>
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Bacterial Agents</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Bacillus subtilis</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Bacillus subtilis</term>
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacillus subtilis</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bacillus subtilis</term>
<term>Bactéries</term>
<term>Protéines bactériennes</term>
<term>Transporteurs ABC</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacillus subtilis</term>
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bacillus subtilis</term>
<term>Bactéries</term>
<term>Protéines bactériennes</term>
<term>Transporteurs ABC</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antibactériens</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Resistance, Bacterial</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Résistance bactérienne aux médicaments</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Firmicutes bacteria, ATP-binding cassette (ABC) transporters have been recognized as important resistance determinants against antimicrobial peptides. Together with neighboring two-component systems (TCSs), which regulate their expression, they form specific detoxification modules. Both the transport permease and sensor kinase components show unusual domain architecture: the permeases contain a large extracellular domain, while the sensor kinases lack an obvious input domain. One of the best-characterized examples is the bacitracin resistance module BceRS-BceAB of Bacillus subtilis. Strikingly, in this system, the ABC transporter and TCS have an absolute mutual requirement for each other in both sensing of and resistance to bacitracin, suggesting a novel mode of signal transduction in which the transporter constitutes the actual sensor. We identified over 250 such BceAB-like ABC transporters in the current databases. They occurred almost exclusively in Firmicutes bacteria, and 80% of the transporters were associated with a BceRS-like TCS. Phylogenetic analyses of the permease and sensor kinase components revealed a tight evolutionary correlation. Our findings suggest a direct regulatory interaction between the ABC transporters and TCSs, mediating communication between both components. Based on their observed coclustering and conservation of response regulator binding sites, we could identify putative corresponding two-component systems for transporters lacking a regulatory system in their immediate neighborhood. Taken together, our results show that these types of ABC transporters and TCSs have coevolved to form self-sufficient detoxification modules against antimicrobial peptides, widely distributed among Firmicutes bacteria.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21665979</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5530</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>193</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2011</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bacteriology</Title>
<ISOAbbreviation>J Bacteriol</ISOAbbreviation>
</Journal>
<ArticleTitle>Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria.</ArticleTitle>
<Pagination>
<MedlinePgn>3851-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JB.05175-11</ELocationID>
<Abstract>
<AbstractText>In Firmicutes bacteria, ATP-binding cassette (ABC) transporters have been recognized as important resistance determinants against antimicrobial peptides. Together with neighboring two-component systems (TCSs), which regulate their expression, they form specific detoxification modules. Both the transport permease and sensor kinase components show unusual domain architecture: the permeases contain a large extracellular domain, while the sensor kinases lack an obvious input domain. One of the best-characterized examples is the bacitracin resistance module BceRS-BceAB of Bacillus subtilis. Strikingly, in this system, the ABC transporter and TCS have an absolute mutual requirement for each other in both sensing of and resistance to bacitracin, suggesting a novel mode of signal transduction in which the transporter constitutes the actual sensor. We identified over 250 such BceAB-like ABC transporters in the current databases. They occurred almost exclusively in Firmicutes bacteria, and 80% of the transporters were associated with a BceRS-like TCS. Phylogenetic analyses of the permease and sensor kinase components revealed a tight evolutionary correlation. Our findings suggest a direct regulatory interaction between the ABC transporters and TCSs, mediating communication between both components. Based on their observed coclustering and conservation of response regulator binding sites, we could identify putative corresponding two-component systems for transporters lacking a regulatory system in their immediate neighborhood. Taken together, our results show that these types of ABC transporters and TCSs have coevolved to form self-sufficient detoxification modules against antimicrobial peptides, widely distributed among Firmicutes bacteria.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dintner</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Staron</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berchtold</LastName>
<ForeName>Evi</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Petri</LastName>
<ForeName>Tobias</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mascher</LastName>
<ForeName>Thorsten</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gebhard</LastName>
<ForeName>Susanne</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bacteriol</MedlineTA>
<NlmUniqueID>2985120R</NlmUniqueID>
<ISSNLinking>0021-9193</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018528">ATP-Binding Cassette Transporters</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018528" MajorTopicYN="N">ATP-Binding Cassette Transporters</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001412" MajorTopicYN="N">Bacillus subtilis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024881" MajorTopicYN="Y">Drug Resistance, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="Y">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21665979</ArticleId>
<ArticleId IdType="pii">JB.05175-11</ArticleId>
<ArticleId IdType="doi">10.1128/JB.05175-11</ArticleId>
<ArticleId IdType="pmc">PMC3147537</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18792934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Oct;10(10):2796-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Sep;57(5):1367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jun 2;299(2):283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10860738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 12;280(32):28852-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15946938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Jul;183(13):3931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 May;68(3):768-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18394148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Jan;54(1):440-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19917758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D229-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2002 Dec;46(12):3756-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12435673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Oct 22;27(20):2648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2007;422:396-417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17628151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D396-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D401-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19900966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2006 May;50(5):1753-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16641446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1997 Jul;14(7):685-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2006 Apr;5(4):321-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2001 Apr-May;152(3-4):245-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11421272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Dec;66(5):1136-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17961141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D274-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19022853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Dec;70(6):1307-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2005 May;151(Pt 5):1577-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15870467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Jun;19(6):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12801728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Feb 27;154(1):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7867956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Oct;54(10):4416-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Dec;50(5):1591-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Feb;55(2):515-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Aug;49(4):1135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2000;55(1):62-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2007 Aug;51(8):2679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17502406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Aug;150(Pt 8):2609-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Jan;185(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12486040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Dec;189(23):8636-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2008 Feb;9(1):39-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18336322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 20;311(5759):374-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16424339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1945 Oct 12;102(2650):376-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17770204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2009 May;53(5):2034-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19273682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Sep;54(9):3895-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20606066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 2002 Sep;4(5):503-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Nov;264(2):133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Nov;34(4):633-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10564504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18463136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(1):e15951</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21283517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 May;55(5):2362-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2011 Jul;320(1):33-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21517944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19751498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Oct;3(10):777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16205711</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bavière</li>
<li>District de Haute-Bavière</li>
</region>
<settlement>
<li>Munich</li>
</settlement>
<orgName>
<li>Université Louis-et-Maximilien de Munich</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Berchtold, Evi" sort="Berchtold, Evi" uniqKey="Berchtold E" first="Evi" last="Berchtold">Evi Berchtold</name>
<name sortKey="Gebhard, Susanne" sort="Gebhard, Susanne" uniqKey="Gebhard S" first="Susanne" last="Gebhard">Susanne Gebhard</name>
<name sortKey="Mascher, Thorsten" sort="Mascher, Thorsten" uniqKey="Mascher T" first="Thorsten" last="Mascher">Thorsten Mascher</name>
<name sortKey="Petri, Tobias" sort="Petri, Tobias" uniqKey="Petri T" first="Tobias" last="Petri">Tobias Petri</name>
<name sortKey="Staron, Anna" sort="Staron, Anna" uniqKey="Staron A" first="Anna" last="Staron">Anna Staron</name>
</noCountry>
<country name="Allemagne">
<region name="Bavière">
<name sortKey="Dintner, Sebastian" sort="Dintner, Sebastian" uniqKey="Dintner S" first="Sebastian" last="Dintner">Sebastian Dintner</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21665979
   |texte=   Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21665979" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020